The Long-Range Forecast Transient Intercomparison Project (LRFTIP): Data Specifications

Version 2, 12 August 2021

William Merryfield¹ (lead, S2D component), Mikhail Tolstykh^{2,3} (lead, S2S component), Ramiro Saurral^{4,5}, Woo-Sung Lee¹

1 Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, 2 Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), 3 Hydrometcentre of Russia (HMCR), 4 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los Océanos, Buenos Aires, Argentina, 5 CONICET – Universidad de Buenos Aires, Centro de Investigaciones del Mar y la Atmósfera (CIMA), Buenos Aires, Argentina

Project overview

The purpose of the Long-Range Forecast Transient Intercomparison Project (LRFTIP) is to develop an archive of hindcast climatologies and associated diagnostics that can inform investigations into the transient behavior of initialized subseasonal to decadal climate predictions, the development of model biases, and the relative merits of different initialization methods.

In support of the project, a "core" archive based on publicly available hindcast datasets including the Subseasonal to Seasonal Prediction Project (S2S), the Climate-system Historical Forecast Project (CHFP), the Coupled Model Intercomparison Project Phase 5 (CMIP5) has been developed. Additional contributions, including from forecast systems not represented in these projects, are being added as they become available. All data is publicly accessible at http://crd-data-donnees-rdc.ec.gc.ca/CCCMA/products/LRFTIP/ and is in the process of being published in Environment and Climate Change Canada's Data Catalogue with a digital object identifier (doi).

Overview of LRFTIP hindcast climatology archive

- Includes hindcast climatologies for subseasonal, seasonal, and decadal forecasting systems
- **Subseasonal** hindcast climatologies include **daily** values for the first 30-60 days
- Seasonal hindcast climatologies include daily values as above, plus monthly means for the entire hindcast range
- Decadal hindcast climatologies include daily and monthly as above, plus yearly means
- Selected atmosphere, ocean, land and sea ice variables are included (ocean and/or sea ice omitted if not modeled interactively)
- Data are categorized as **Priority 1** (most essential) and **Priority 2** (highly desirable) as guidance to contributors.
- Note: the priorities under **Start dates**, **Frequency**, and **Period** below supersede the "base" priorities for individual variables listed in the data tables. For example,

for near-surface (2m) air temperature "tas" which has base priority 1, daily data for days
 1-30 is Priority 1, whereas daily data for days 31-60 is Priority 2

for near-surface specific humidity "huss" which has base priority 2, daily data for days 1-30 is Priority 2, whereas daily data for days 31-60 is also Priority 2

- For subseasonal and seasonal systems, observation-based ancillary **reference** climatologies, subject to the samegridding and temporal sampling as the hindcast climatologies, are included in order to facilitate assessments of model biases and drift.
- For decadal systems, ancillary climatologies for (i) hindcast initial conditions (e.g. from a supporting reanalysis, termed "analysis"), and (ii) uninitialized model runs (ideally CMIP5-style historical simulations, termed "historical") have been included where available because these model states represent the endpoints, beginning near (i) and evolving toward (ii), of hindcast climatological drift.

Subseasonal

Start dates:

- Near 1st day of Nov, May Priority 1
- Near 1st day of Feb, Aug *Priority 2*

Frequency:

- Daily, forecast days 1-30 Priority 1
- Daily, forecast days 31-60 Priority 2

Variables:

• Tables Atmosphere 2D & Atmosphere 3D, priorities as indicated

Period:

• Climatological period spanning \geq 15 years

<u>Seasonal</u>

Start dates:

• Near 1st day of Nov, Feb, May, Aug – Priority 1

Frequency:

- Daily, forecast days 1-30 Priority 1
- Daily, forecast days 31-60 Priority 2
- Monthly, through longest forecast range Priority 1

Variables:

• All data tables with priorities as indicated

Period:

• Climatological period spanning 30 years (ideally 1981-2010) is preferred, other periods spanning \geq 15 years acceptable

Decadal

Start dates:

- At or shortly before the start of years 1961, 1966,...,2006, as per the CMIP5 Tier 1 decadal prediction experiment (Taylor et al. 2013), OR, at or shortly before the start of N consecutive years (N ≥ 15) Priority 1
- At or shortly before the start of consecutive years 1961...2010 Priority 2

Frequency:

- Daily, forecast days 1-60 Priority 2
- Monthly, calendar years 1-5 of forecast, plus any complete months preceding first full calendar year *Priority 1*
- Monthly, calendar years 6-10 of forecasts Priority 2
- Yearly, through longest forecast range (maximum 10 years) Priority 1

Variables:

• All data tables with priorities as indicated

Period:

- CMIP5 Tier-1 hindcast period 1961...2006 for hindcasts initialized every 5 years ("decadal5")
- Flexible for CMIP5 or non-CMIP5 hindcasts sets initialized every year ("decadal1")

File format and naming convention

- NetCDF format and file naming conventions are a modified version of the original CMIP5 conventions, which are described in Taylor and Doutriaux (2011) and Taylor et al. (2012)
- In accordance with the CMIP5 convention, missing values (e.g. over land for ocean and sea ice variables) are set to 1.e20, and attributes "missing_value = 1.e+20f" and "_FillValue = 1.e+20f" are set for the corresponding model variable
- A departure from the CMIP5 convention is that the usual time variable is replaced by a leadtime variable describing time elapsed since the beginning of the forecast. This variable uses the conventions set out in Bretonnière (2014):

time:axis = "T"
double leadtime(time);
leadtime:units = "days";
leadtime:long_name = "Time elapsed since the start of the forecast";
leadtime:standard_name = "forecast_period";

- The NetCDF4 standard is used in order to take advantage of the data compression capability of that format
- Data will be provided preferably on the original model grids on which each variable is represented. Exceptions may occur when source data is obtained from a multi-model dataset for which interpolation to a standard grid has been performed, as for the S2S, ENSEMBLES and NMME Phase 2 projects.
- Regarding file names, the general structure is the same as for CMIP5, including the CMIP5 decadal prediction experiments; however the interpretation of (i) the experiment name, (ii) the 'rip' identifier, and (iii) the time range are modified, as follows:

(i) To emphasize that files contain hindcast climatologies as a function of lead time, the experiment names employed are

subseasonal-clim for subseasonal hindcasts
seasonal-clim for seasonal hindcasts
decadal-clim-s5 for decadal hindcasts initialized every five years
decadal-clim-s1 for decadal hindcasts initialized every year

In addition, when the "endpoint" climatologies associated with the initial conditions and uninitialized (preferably CMIP5 historical) simulations are available, these are named **analysis-clim** for the hindcast initial conditions or associated (re)analysis

historical-clim for a freely running historical simulation

These climatologies should ideally be based on the same sets of initialization dates as the corresponding hindcast climatologies. For decadal hindcasts, this can correspond to **analysis-clim-s5/historical-clim-s5** for decadal hindcasts initialized every five years, or **analysis-clim-s1/historical-clim-s1** for decadal hindcasts initialized every year.

- (ii) The 'r' component of the 'rip' identifier, normally indicative of realization or ensemble number, instead identifies the ensemble members that were averaged in producing the climatology. For consecutively numbered ensemble members, the first and last members are indicated separated by a hyphen. For example, when ensemble members 1 through 10 are used, the rip identifier is r1-10i1p1 (assuming the initialization and physics identifiers are i1 and p1 respectively). In any unusual cases where the ensemble members that are averaged are not consecutively numbered, the ensemble members used will be indicated, separated by hyphens, in *descending* order. For example, in a case where ensemble members 1,2, 3 and 5 are averaged, the rip identifier is r5-3-2-1i1p1 (again assuming i1 and p1 are used).
- (iii) Instead of the start and end time of an individual simulation, the time range indicates the start time of the earliest forecast contributing to the climatology, together with the end time of the latest contributing forecast. As an example, consider a **decadal-clim-s5** climatology for 10-year decadal hindcasts initialized every five years at the beginning of 1961, 1966,...2006. For annual means extending through the full 10 years, the first and last forecasts cover 1961-1970 and 2006-2015, and the time range would therefore be 1961-2015. For monthly data extending through the first 5 years, the first and last forecast periods are 196101-196512 and 200601-201012, so that the time range is 196101-201012. For daily values extending through the first 30 days, the first and last forecast periods are 19610101-19610130 and 20060101-20060130, so that the time range is 19610101-20060130.

Example: A monthly SST (variable name 'tos') climatology for decadal hindcasts initialized every five years at the beginning of 1961, 1966,...2006 from ensemble members 1-10 of the CanCM4 model using initialization method i1 is labeled as

tos_Omon_CanCM4_decadal-clim-s5_r1-10i1p1_196101-201512.nc4

List of variables

Atmosphere 2D (CMOR Tables day, Amon)

Variable name	Description	CF Standard Name	unit	realm	freq	pri- ority
clt	Total Cloud Fraction	cloud_area_fraction	%	atmos	d,m, y	1
evspsbl	Evaporatio n	water_evaporation_flux	kg m-2 s-1	atmos	d,m, y	2
hfss	Surface Upward Sensible Heat Flux	surface_upward_sensible_heat_flux	W m-2	atmos	d,m, y	1
hfls	Surface Upward Latent Heat Flux	surface_upward_latent_heat_flux	W m-2	atmos	d,m, y	1
huss	Near- Surface Specific Humidity	specific_humidity	1	atmos	d,m, y	2
pr	Precipitatio n	precipitation_flux	kg m-2 s-1	atmos	d,m, y	1
psl	Sea Level Pressure	air_pressure_at_sea_level	Ра	atmos	d,m, y	1
rlds	Surface Downwellin g Longwave Radiation	surface_downwelling_longwave_flux_in_air	W m-2	atmos	d,m, y	1*
rlus	Surface Upwelling Longwave Radiation	surface_upwelling_longwave_flux_in_air	W m-2	atmos	d,m, y	1*
rlut	TOA Outgoing Longwave Radiation	toa_outgoing_longwave_flux	W m-2	atmos	d,m, y	1**
rsds	Surface Downwellin g	surface_downwelling_shortwave_flux_in_air	W m-2	atmos	d,m, y	1*

	Shortwave Radiation					
rsdt	TOA Incident Shortwave Radiation	toa_incoming_shortwave_flux	W m-2	atmos	d,m, y	1**
rsut	TOA Outgoing Shortwave Radiation	toa_outgoing_shortwave_flux	W m-2	atmos	d,m, y	1**
rsus	Surface Upwelling Shortwave Radiation	surface_upwelling_shortwave_flux_in_air	W m-2	atmos	d,m, y	1*
tas	Near- Surface Air Temperatu re	air_temperature	К	atmos	d,m, y	1
tasmax	Daily Maximum Near- Surface Air Temperatu re	air_temperature	К	atmos	d,m, y	2
tasmin	Daily Minimum Near- Surface Air Temperatu re	air_temperature	К	atmos	d,m, y	2
tauu	Surface Downward Eastward Wind Stress	surface_downward_eastward_stress	Ра	atmos	d,m, y	1
tauv	Surface Downward Northward Wind Stress	surface_downward_northward_stress	Pa	atmos	d,m, y	1
ts	Surface Temperatu re	surface_temperature	К	atmos	d,m, y	1

uas	Eastward	eastward_wind	m s-1	atmos	d,m,	2
	Near-				у	
	Surface					
	Wind					
vas	Northward	northward_wind	m s-1	atmos	d,m,	2
	Near-				у	
	Surface					
	Wind					

* In cases where net longwave or shortwave surface fluxes are available but the up- and/or downwelling components are not, the net fluxes may be reported as "rls / surface_net_downward_longwave_flux" and "rss / surface_net_downward_shortwave_flux" respectively

** In cases where net longwave or shortwave TOA fluxes are available but the incoming and/or outgoing components are not, the net fluxes may be reported as "rlt / toa_net_downward_longwave_flux" and "rst / toa_net_downward_shortwave_flux" respectively

Variable name	Description	CF Standard Name	unit	realm	freq	pri- ority
hus	Specific Humidity	specific_humidity	1	atmos	d,m, y	1
ta	Air Temperatu re	air_temperature	К	atmos	d,m, y	1
ua	Eastward Wind	eastward_wind	m s-1	atmos	d,m, y	1
va	Northward Wind	northward_wind	m s-1	atmos	d,m, y	1

Atmosphere 3D (CMOR Tables day, Amon)

Land (CMOR Tables Lmon, Llmon)

Variable name	Description	CF Standard Name	unit	realm	freq	pri- ority
mofso	Soil Frozen Water Content	soil_frozen_water_content	kg m-2	land	m,y	2
mrso	Total Soil Moisture Content	soil_moisture_content	kg m-2	land	m,y	1*
mrsov	Total Volumetric Soil	volume_fraction_of_water_in_soil	1	land	m,y	1*

	Moisture (Liquid and Solid) Content					
snw	Surface Snow Amount	surface_snow_amount	kg m-2	land	m,y	1

* If mrso is not available then mrsov may be reported. If mrso is reported, then mrsov need not be reported

Ocean 2D (CMOR Tables day, Omon)

Variable name	Description	CF Standard Name	unit	realm	freq	pri- ority
hc300*	upper 300m heat content	heat_content_to_300m_depth	К	ocean	d, m,y	2
mlotst	Ocean Mixed Layer Thickness Defined by Sigma T	ocean_mixed_layer_thickness_defined_by_sig ma_t	m	ocean	m,y	1
msftbarot	Ocean Barotropic Mass Streamfunc tion	ocean_barotropic_mass_streamfunction	kg s-1	ocean	m,y	1
msftmyzv* **	Ocean Meridional Overturnin g Volume Streamfunc tion	ocean_meridional_overturning_volume_strea mfunction	m3 s-1	ocean	m,y	2
SOS	Sea Surface Salinity	sea_surface_salinity	psu	ocean	m,y	1
t20d*	20 degree isotherm depth	ocean_20_degree_isotherm_depth	m	ocean	d, m,y	2
thetaoeq* *	Equatorial cross section of sea water potential temperatur	equatorial_sea_water_potential_temperature	К	ocean	d,m, Y	2

	е					
tos	Sea Surface Temperatu re	sea_surface_temperature	К	ocean	d,m, y	1
zos	Sea Surface Height Above Geoid	sea_surface_height_above_geoid	m	ocean	m,y	1

* hc300 and t20d are non-CMIP5 variables that are derivable from the Ocean 3D variable thetao

** thetaoeq is a non-CMIP5 variable that is derivable from the Ocean 3D variable thetao, and consists of a 2D cross section of thetao, averaged between 2°S and 2°N, as a function of longitude (0° to 360°) and depth (0 to 300m)

*** msftmyzv is based on the Ocean 3D resolved sea water velocity components vo and wo, and hence differs from the CMIP5 variable msftmyz, which includes parameterized eddy-induced "bolus" velocities; it is reported separately as msftmyzv_atl, msftmyzv_pac, and msftmyzv_glb for the Atlantic, Pacific+Indian, and Global Oceans respectively.

Variable name	Description	CF Standard Name	unit	realm	freq	pri- ority
SO	Sea Water Salinity	sea_water_salinity	psu	ocean	m,y	1
thetao	Sea Water Potential Temperatu re	sea_water_potential_temperature	К	ocean	m,y	1
uo	Sea Water X Velocity	sea_water_x_velocity	m s-1	ocean	m,y	1
vo	Sea Water Y Velocity	sea_water_y_velocity	m s-1	ocean	m,y	1
wo	Upward Ocean Velocity	upward_ocean_velocity	m s-1	ocean	m,y	1

Ocean 3D (CMOR Table Omon)

Sea Ice (CMOR Table Olmon)

Variable name	Description	CF Standard Name	unit	realm	freq	pri- ority
sic	Sea Ice Area	sea_ice_area_fraction	%	sealce	m,y	1

	Fraction					
sit	Sea Ice Thickness	sea_ice_thickness	m	sealce	m,y	1

Time-Invariant Fields (CMOR Table fx)

Variable name	Description	CF Standard Name	unit	realm	dime nsion ality	pri- ority
areacella	Atmospher e Grid-Cell Area	cell_area	m2	atmos	ху	1
sftlf	Land Area Fraction	land_area_fraction	%	atmos	ху	1
mrsofc	Capacity of Soil to Store Water	soil_moisture_content_at_field_capacity	kg m-2	land	ху	2
areacello	Ocean Grid-Cell Area	cell_area	m2	ocean	ху	1
basin	Region Selection Index*	region	1	ocean	ху	1
deptho	Sea Floor Depth	sea_floor_depth_below_geoid	m	ocean	ху	1
thkcello	Ocean Model Cell Thickness	cell_thickness	m	ocean	Z	2

* Report on the same grid as the temperature field. flag_values=0,1,2,3,4,5,6,7,8,9,10 corresponding to flag_meanings=global_land, southern_ocean, atlantic_ocean, pacific_ocean, arctic_ocean, indian_ocean, mediterranean_sea, black_sea, hudson_bay, baltic_sea, red_sea.

Notes on naming of variables

In a few instances, the variable and CF standard names used in CMIP5 differ from names adopted in coordinated forecasting experiments such as ENSEMBLES, CHFP, and NMME. In such cases, the CMIP5 standard is adopted. These cases are summarized as follows

CMIP5	CMIP5 CF Standard	non-CMIP5	non-CMIP5 Standard	non-CMIP5
Variable	Name	Variable	Name	experiment(s)
name		name		
name		name		

snw	surface_snow_amount	snld	<pre>lwe_thickness_of_surfa ce_snow_amount</pre>	СНГР
tauv	surface_downward_nor thward_stress	tauy	surface_downward_nor thward_stress	СНҒР
ZOS	<pre>sea_surface_height_abo ve_geoid</pre>	zoh	<pre>sea_surface_height_abo ve_geoid</pre>	NMME

Data Archive

Hindcast and ancillary climatology datasets in accordance with the above specifications and associated diagnostics are available at <u>http://crd-data-donnees-</u>

<u>rdc.ec.gc.ca/CCCMA/products/LRFTIP/SEASONAL/data/CanCM4i/seasonal-clim/mon/land/</u>. This archive is in the in the process of being published in Environment and Climate Change Canada's Data Catalogue with a digital object identifier (doi).

Documenting reference

Saurral, R. I., W. J. Merryfield, M. A. Tolstykh, W.-S. Lee, F. J. Doblas-Reyes, J. Garcia-Serrano, F. Massonnet, G. A. Meehl and H. Teng, 2021: A dataset for intercomparing the transient behavior of dynamical model-based subseasonal to decadal climate predictions. *J. Adv. Model. Earth Syst.*, submitted.

REFERENCES

Bretonnière, P. A., 2014: SPECS common data repository: File content and format, data structure and metadata, <u>http://specs-fp7.eu/sites/default/files/u1/SPECS_standard_output(1).pdf</u>

Taylor, K.E., and C. Doutriaux, 2011: CMIP5 Model Output Requirements: File Contents and Format, Data Structure and Metadata, <u>http://cmip-pcmdi.llnl.gov/cmip5/docs/CMIP5_output_metadata_requirements.pdf</u>

Taylor, K.E., V. Balaji, S. Hankin, M. Juckes, B. Lawrence, and S. Pascoe: 2012: CMIP5 Data Reference Syntax (DRS) and Controlled Vocabularies, <u>http://cmippcmdi.llnl.gov/cmip5/docs/cmip5_data_reference_syntax.pdf</u>

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An Overview of CMIP5 and the Experiment Design, *Bull. Amer. Meteor. Soc.*, 93, 485–498.

<u>APPENDIX A</u> – Summary of subseasonal forecast system data holdings as of August 2021 Numbers indicate number of available variables for each model and data type

Reference

Forecasts

Subseasonal Model	Atn	nosph Daily	Ocean Daily					
ECCC-S2S	9	7	1	1				
ECMWF-S2S	11	7						
JMA-S2S	2	2	1	1				
MeteoFrance-S2S	11	7	1	1				
NCEP-S2S	11	7	1	1				
UKMO-S2S	6	4	1	1				

<u>APPENDIX B</u> – Summary of seasonal forecast system data holdings as of August 2021

Numbers indicate number of available variables for each model and data type

Reference

Forecasts

Seasonal Model	Atmosphere Daily			Atmosphere Monthly			Ocear ⁄Ionthl	-	I	Land Month	Sea Ice Monthly			
CanCM3	18	22		22	22		12	12			4	1	2	
CanCM4	18	22		22	22		12	12			4	1	2	
CanCM4i	21	26		22	26		11	13		2	3	1	2	
GEM-NEMO				12	12		1	1		1	1	1	1	
ECMWF-S4				18	20						1			
JMAMRI-CGCM1	12	16		20	20		6	7						
JMAMRI-CGCM2				19	21		6	6			13		13	
MIROC5_v1.0	12	18		16	18		6	7						
MPI-ESM-LR				20	22									
POAMA p24a/b/c				12	13									
ARPEGE				7	7									
CFS_SHFP	3	3		8	7									
СМАМ	3	5		7	7						10		10	
GloSea4		1		7	7									
GloSea5		1		7	7									
ENSEMBLES (CMCC- INGV, ECMWF-S3, IFM- GEOMAR, MF, DePreSys, HadGEM2	16	20		20	20						1			

<u>APPENDIX C</u> – Summary of decadal forecast system data holdings as of August 2021

Numbers indicate number of available variables for each model and data type

Analysis / Initial Conc			F	or	eca	ast	s	Historical Simulations													
Decadal Model	Atmosphere Daily			nosp Iontr	here Ny		Atmosphere Yearly			Ocean Monthly			Ocean Yearly			Land Month/yearly			Sealce Month/Yearly		
CCSM4 (i1,i2)				24	24		24	24		8	9		8	9		3	3		2	2	
MF-ENSEMBLES				20			20			11			11			1					
CFSv2(i1,i2)					26			26			7			7			1			2	
CanCM4 (i1,i2)	25	16	6	25	26	17	25	26	17	13	13	13	13	13	13	4	3	2	2	2	2
CNRM-CM5		6	6		26	26		26	26		10	10		10	10		3	3		2	2
ECMWF-ENSEMBLES					20			20			11			11			1				
GFDL-CM2p1					18	18		18	18		11	11		11	11		2	2		2	2
HadCM3		9	9		25	25		25	25		6	6		6	6		3	3		2	2
IFM-ENSEMBLES					20			20			11			11			1				
MIROC5		20	20		26	26		26	26		7			7			3	3		2	2
MRI-CGCM3		6			26			26			10			10			3			2	
UKMO-DePreSys-ENS					20			20								1					
UKMO-HadGEM2-ENS				20			20									1					
EC-EARTH				19	17		19	17	7 3		3	73		3					2	2	
BCC-CSM1.1	6 6			26	26		26	26		7	7 7 7		7					2	2		
CanESM5	21	21	21	26	26	26	26	26	26	11	11	11	11	11	11	3	3	3	2	2	2