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ABSTRACT

The application of trivariate thin-plate smoothing splines to the interpolation of daily weather data is

investigated. The method was used to develop spatial models of daily minimum and maximum temperature

and daily precipitation for all of Canada, at a spatial resolution of 300 arc s of latitude and longitude, for the

period 1961–2003. Each daily model was optimized automatically by minimizing the generalized cross val-

idation. The fitted trivariate splines incorporated a spatially varying dependence on ground elevation and

were able to adapt automatically to the large variation in station density over Canada. Extensive quality

control measures were performed on the source data. Error estimates for the fitted surfaces based on

withheld data across southern Canada were comparable to, or smaller than, errors obtained by daily inter-

polation studies elsewhere with denser data networks. Mean absolute errors in daily maximum and minimum

temperature averaged over all years were 1.18 and 1.68C, respectively. Daily temperature extremes were also

well matched. Daily precipitation is challenging because of short correlation length scales, the preponderance

of zeros, and significant error associated with measurement of snow. A two-stage approach was adopted in

which precipitation occurrence was estimated and then used in conjunction with a surface of positive pre-

cipitation values. Daily precipitation occurrence was correctly predicted 83% of the time. Withheld errors in

daily precipitation were small, with mean absolute errors of 2.9 mm, although these were relatively large in

percentage terms. However, mean percent absolute errors in seasonal and annual precipitation totals were

14% and 9%, respectively, and seasonal precipitation upper 95th percentiles were attenuated on average by

8%. Precipitation and daily maximum temperatures were most accurately interpolated in the autumn,

consistent with the large well-organized synoptic systems that prevail in this season. Daily minimum tem-

peratures were most accurately interpolated in summer. The withheld data tests indicate that the models can

be used with confidence across southern Canada in applications that depend on daily temperature and

accumulated seasonal and annual precipitation. They should be used with care in applications that depend

critically on daily precipitation extremes.

1. Introduction

Spatially continuous models of daily weather variables

are increasingly in demand to support many applications.
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Daily inputs are needed for water budget modeling

(Akinremi et al. 1996), extreme event models (Wagner

1996), analysis of crop and tree growth (Easterling and

Apps 2005), and modeling the occurrence of insect pests

and disease (Boland et al. 2004). Crop yield can be

significantly influenced by daily temperature extremes,

such as frosts, which are masked by monthly climate

averages (Lobell et al. 2007). Similarly, the water bal-

ance of crops is sensitive, not only to the total amount of

precipitation received over a period of time, but also to

the finer-scale temporal patterns of precipitation events

(Shen et al. 2001).

Spatial interpolation of daily weather offers a number

of challenges beyond those encountered with long-term

monthly mean climatologies. Daily models are required

to track complex spatial patterns due to elevation gra-

dients, weather fronts, vegetation cover, and local ex-

posure to water bodies. Daily models also require a large

amount of computing time and storage space. Further

requirements are operational simplicity and reliability of

the model optimization procedures that need to be ap-

plied systematically over many days. Thus, despite the

demand for daily data, there are relatively few high-

resolution models that provide extensive finescale spa-

tiotemporal coverage of both daily temperature and

daily precipitation.

These considerations have led Thornton et al. (1997)

to devise a local, elevation detrended, distance-weighted

method to interpolate daily meteorological variables

over complex terrain. Thornton (2007) used this proce-

dure to generate surfaces of daily meteorological varia-

bles for the period 1980–97 over the conterminous United

States and Hasenauer et al. (2003) applied the same

method to a dense network over Austria. Such analyses

are a significant advance over earlier coarse-resolution

studies using relatively simple nearest-neighbor and

Cressman methods (Piper and Stewart 1996; Higgins

et al. 2000). Other recent studies with more restricted

spatial coverage include Hunter and Meentemeyer

(2005) who combined ordinary kriging with long-term

monthly mean climate maps to interpolate 2-km grids of

daily temperature and precipitation over California for

the period 1980–2003 and Shen et al. (2001) who used a

hybrid inverse distance-weighted and nearest-neighbor

method to interpolate daily temperature and precipi-

tation values onto ecodistrict polygons in Alberta for

the period 1961–97.

Here we apply trivariate thin-plate smoothing splines,

as implemented in the ‘‘ANUSPLIN’’ software (Hutch-

inson 1995a, 2004), to model the complex spatial pat-

terns associated with daily data across Canada as spa-

tially continuous functions of longitude, latitude, and

elevation. These models are required particularly for

agricultural and forestry applications in the southern

half of Canada. Thin-plate splines have been found to

be superior to the gradient plus inverse distance squared

(GIDS) method of Nalder and Wein (1998) in inter-

polating monthly mean temperature and precipitation

over Canada (Price et al. 2000). They have been less

commonly applied to daily data, although separate

comparative daily studies by Xia et al. (2001) and Jarvis

and Stuart (2001) found trivariate thin-plate spline

models to yield the most accurate results.

Thin-plate spline smoothing splines can be viewed as

a generalization of multivariate linear regression in

which a parametric model is replaced by a smooth

nonparametric function (Wahba 1990). The method op-

timizes the amount of data smoothing to minimize the

predictive error, as measured by the generalized cross

validation (GCV). This is performed automatically and

simultaneously as each surface is fitted, making it well

suited to the application here to many days of data. The

method is robust to varying underlying spatial statistical

models of the data (Hutchinson 1993) and adapts au-

tomatically to the spatial density of the data. The latter

feature is particularly relevant for the large variation in

density displayed by the Canadian meteorological net-

work. The method also supports the calculation of

spatially distributed standard errors (Wahba 1990;

Hutchinson 1993, 1995a).

The usual approach is to fit smoothing spline functions

of three independent variables representing the location

of each station: longitude (in decimal degrees), latitude

(in decimal degrees), and elevation above sea level (in

kilometers). This relative scaling of elevation has been

optimized in precipitation analyses at various time scales

and locations to obtain surfaces with minimum error

(Hutchinson 1995a, 1998b). It represents the impact of

elevation on surface climate as ;100 times greater than

the impact of horizontal position. This is consistent with

the ratio between the commonly accepted synoptic hori-

zontal and vertical distance scales of 1000 km and 10 km,

respectively (Daley 1991). Thus, temperature and pre-

cipitation patterns usually reflect a topographic landscape

that is exaggerated in the vertical, leading to significant

influence on precipitation patterns by relatively modest

topographic features (Barros and Kuligowski 1998). The

method is extended here for daily precipitation to a two-

step procedure in which a binary surface of precipitation

occurrence is first generated and then combined with a

surface of positive precipitation values. This accommo-

dates the differing spatial coherence that has been ob-

served in precipitation occurrence and intensity data

(Hutchinson 1995b). It is similar to the strategy employed

by Thornton et al. (1997) who also separately interpolated

precipitation occurrence and positive precipitation values.
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The accuracy of the fitted daily models is assessed by

examining statistics provided by the thin-plate smoothing

spline procedure and by withholding from the analyses

50 stations broadly representing the southern half of

Canada. This is where most agricultural and forestry

activity occurs and where the overwhelming majority of

Canadian meteorological stations are located. Com-

prehensive error statistics for the withheld stations are

presented, including assessments of bias, mean absolute

error, root-mean-square error, and daily and seasonal

extremes. These error statistics are compared with

corresponding error statistics presented by existing

daily interpolation studies, bearing in mind the differing

data densities for the different studies. A comparative

assessment of accuracy in the northern half of Canada is

also provided. The paper concludes by discussing the

limitations of the current methodology, particularly in

the representation of daily precipitation extremes, and

briefly discusses possible improvements.

2. Data preparation

Considerable effort went into preparing and checking

the data (Hopkinson 2005). Daily records of precipita-

tion, and maximum and minimum temperature from

Environment Canada were examined for accuracy in

geographic position (i.e., latitude, longitude, and ele-

vation), and for the presence of flags indicating uncer-

tainty in the associated data values. Modifications were

made to data values to address missing values, estimated

values, trace precipitation amounts, and precipitation

accumulated over multiple days. These efforts substan-

tially increased the number of station days available and

the final product is the most complete daily dataset

currently available for Canada for the period.

The period 1961–2003 was selected for the current

work. The number of precipitation stations that were

active in any given year over this period ranged from

2000 to 3000 while the number of temperature stations

varied from about 1500 to 2200, as shown in Fig. 1. For

both temperature and precipitation the period of maxi-

mum station coverage extends from the early 1970s to

the early 1990s. Figure 2 shows the stations used for

modeling on yearday 250 in 1975. Coverage is relatively

dense in the southern portion of the country but be-

comes very sparse in the north. In fact, around 95% of

Canadian weather stations lie south of the line shown in

Fig. 2 defined by

latitude 5 �0.15 3 longitude 1 42.0, (1)

where latitude and longitude are measured in degrees.

Approximately 50% of Canada lies south of this line,

corresponding to a land area of about 5.0 3 106 km2.

The density of station coverage in this southern half of

the country is thus around 1 station per 2500 km2. This

is sparser than the data network densities for all non-

Canadian interpolation studies cited in this paper.

An examination of geographic coordinates of the data

revealed a number of issues. There were stations with

missing coordinates and some with default coordinates

such as elevations of 0 m. Gross errors in latitude, lon-

gitude, and elevation were identified and corrected.

These errors were readily identified as large outliers from

preliminary smoothing spline analyses. For all stations

with missing elevation, and some stations with zero

elevation, the digital elevation model developed by

Great Lakes Forestry Centre of Natural Resources

Canada (more information is available online at http://

www.glfc.cfs.nrcan.gc.ca/landscape/topographic_models_e.

html; see also Lawrence et al. 2008) was used to estimate

station elevations.

The daily temperature and precipitation data had

various flags indicating missing and estimated values.

The estimated values were accepted as valid data via a

standard quality control process. This included com-

parisons with observations from surrounding stations

and interpolation between preceding and subsequent

observations at the same station. The precipitation data

had flags indicating trace values and accumulated values

over multiple days. In the Canadian data archive, trace

precipitation values have been assigned a value of zero.

Mekis and Hogg (1999) suggested a value of 0.1 mm for

rainfall traces, 0.07 mm for snowfall traces, and 0.03 mm

for ice crystal traces (very cold temperatures). Coinci-

dent precipitation, weather, and temperature observa-

tions were not available at many climate stations so a

simple method, based on Mekis and Hogg (1999), was

used to estimate precipitation associated with trace

observations. The method used latitude and maximum

temperature at each station to assign a water equivalent

ranging from 0.07 mm at lower latitudes to 0.03 mm at

higher latitudes and/or very cold temperatures.

The temporal distribution of accumulated precipita-

tion was estimated from the temporal distribution of

daily precipitation at neighboring stations within a ra-

dius of 100 km. The total precipitation at each of the

neighboring stations was determined for the accumu-

lation period and then the daily amounts expressed as

a fraction of the total. An inverse distance-squared-

weighting scheme (Cressman 1959) was used to estimate

the daily fraction at the accumulation station. If there

were no stations with valid data within 100 km, then

values for all days in the accumulated event were set to

missing. Accumulation events longer than 4 days were

set to missing because of the possible impact of evapo-

ration from the gauge. This approach enabled the use of
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thousands of precipitation values that would otherwise

have been set to missing.

One issue that was not addressed was the difference in

the climate day between ordinary climate stations and

principal meteorological stations. Since July 1961 all

principal stations have a climate day ending at 0600

UTC (around 0000 LST). On the other hand, ordinary

climate stations, which make up the overwhelming

FIG. 1. Numbers of climate stations with daily temperature and precipitation data for 1961–2003.

FIG. 2. Station locations used to generate daily precipitation models; example for yearday 250 in

1975. Line defined by latitude 5 20.15 3 longitude 142.0. Lambert conformal conic projection.
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majority of stations, usually end their day for maximum

temperature and precipitation around 0700 or 0800 LST

and for minimum temperature around 1700 LST

(Hopkinson 2005). These time differences can result in

occasional large differences in observed minimum and

maximum temperature and precipitation, leading to

negative biases in winter daily minimum temperatures

recorded at principal stations. Work is under way to

adjust daily data at principal stations to be consistent

with the recording times of ordinary stations. These

data will be included in subsequent studies.

3. Methods

a. Thin-plate smoothing spline models of surface
climate

A comprehensive introduction to the technique of

thin-plate smoothing splines is given in Wahba (1990)

and early applications to the spatial interpolation of

monthly mean climate are given in Hutchinson (1991,

1995a). Associated statistical analyses and comparisons

with kriging are given in Hutchinson (1993) and Hutchinson

and Gessler (1994). The basic partial spline model for N

observed data values zi is given by

zi 5 f (xi) 1 bTyi 1 ei (i 5 1, . . . , N), (2)

where each xi is a d-dimensional vector of independent

variables, f is an unknown smooth function of the xi,

each yi is a p-dimensional vector of independent co-

variates, b is an unknown p-dimensional vector of co-

efficients of the yi, and each ei is an independent, zero

mean error term. The model reduces to an ordinary

thin-plate spline model when there are no covariates

( p 5 0). In the applications here, ordinary splines are

considered, with the xi representing the three coordi-

nates longitude, longitude, and appropriately scaled

elevation. The function f and the coefficient vector b are

determined by minimizing

�
N

i51
[zi � f (xi)� bTyi]

2
1 r Jm( f ), (3)

where Jm( f ) is a nonnegative measure of the complexity

of f, the ‘‘roughness penalty’’ defined in terms of an in-

tegral of mth-order partial derivatives of f, and r is a

positive number called the smoothing parameter. The

value of the smoothing parameter is normally determined

by minimizing the GCV. Operational details of the

ANUSPLIN package can be found in Hutchinson (2004).

The method includes a computationally efficient

implementation for larger datasets. This is based on

restricting the complexity of the fitted surfaces by using

a set of ‘‘knots’’ that are chosen to equisample the in-

dependent variable space (Wahba 1990; Luo and Wahba

1997; Hutchinson 2004). Since the number of compu-

tations is proportional to the cube of the number of

knots, this can lead to a 10-fold or more reduction in

computation time. An alternative computational sim-

plification using regression splines has been described

by Wood (2003).

A regular grid of estimates can be generated from the

fitted thin-plate spline surface coefficients, provided a

regular grid of values for the third independent variable

of elevation is supplied. Thus, the resolution of the final

climate grid is determined by the resolution of the

supplied elevation grid. This involves a trade-off be-

tween managing the resultant data files and the variation–

error in the map output. In the present study, the in-

dependent variable was provided from a digital eleva-

tion model (DEM) with 300 arc s resolution (;10 km),

although finer resolutions are possible. This DEM was

derived from a Canadian DEM generated from Cana-

da’s National Topographic Series 1:250 000 scale data

using the ‘‘ANUDEM’’ program (Hutchinson 1989,

2008; see also Lawrence et al. 2008).

b. Modeling daily maximum and daily minimum
temperature

The daily maximum and daily minimum temperature

surfaces were calculated by fitting standard trivariate

smoothing splines with every data point a knot. These

surfaces effectively fitted spatially varying, but region-

ally defined, elevation lapse rates. This approach is in-

dicated by the analysis of Bolstad et al. (1998) who

found regional regression models superior to bivariate

kriging models in interpolating daily temperature.

Rolland (2003) similarly found significant spatial and

seasonal variation in lapse rates of monthly temperature

in alpine regions. The chosen model is also indicated by

the analysis of monthly mean temperature by McKenney

et al. (2001) who found trivariate splines to marginally

outperform partial thin-plate spline analyses where the

elevation dependence was restricted to be a linear de-

pendence specified by a fitted constant value.

c. Modeling daily precipitation

On average over 50% of days in Canada receive no

precipitation. A two-stage approach was adapted to

model precipitation occurrence and positive precipita-

tion separately. As noted above, this approach accom-

modates the differing spatial coherence that has been

observed in precipitation occurrence and intensity data

(Hutchinson 1995b). It also overcomes instabilities en-

countered in applying thin-plate splines directly to all
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zero and nonzero data simultaneously. We found greater

spatial coherence, and hence longer spatial correlation

scales, in the occurrence data than in the positive pre-

cipitation data. Thus, the occurrence analyses could be

effectively performed by a thin-plate spline with simpler

structure defined by 1000 knots. This was applied to all

2000–3000 precipitation observations after first con-

verting all positive values to 1 and leaving zero values

unchanged. The interpolated surface then indicated that

precipitation occurred where the interpolated value

exceeded a threshold of 0.5 and that precipitation did

not occur where the interpolated value was less than 0.5.

The final interpolated precipitation values were set to

zero where the interpolated occurrence surface was less

than or equal to 0.5 and set to the values from the

positive precipitation surface, described below, where

the occurrence surface was greater than 0.5.

The positive precipitation surface was generated from

the relatively smaller number of positive precipitation

values. These surfaces were fitted by a standard thin-

plate spline with every data point a knot. Importantly,

the surfaces were fitted to the square roots of the posi-

tive data values. This is consistent with the observation

that the square root of daily rainfall is distributed in time

as approximately the upper tail of a normal distribution

(Hutchinson 1995b). The transport processes associated

with daily precipitation imply that precipitation data are

similarly distributed over the data network. The effect of

using the square root transformation is to apply more

smoothing to large precipitation values and less smooth-

ing to small precipitation data values. The interpolated

values are corrected for the small negative bias that the

square root transformation introduces (Hutchinson 2004).

Though commonly considered, a logarithmic transforma-

tion applied to precipitation data leads to spline surfaces

that oversmooth larger values and, unlike the square

root transformation, is undefined when applied to zero.

Hutchinson (1998a) found that applying the square root

transformation can reduce interpolation error by about

10%. Tait et al. (2006) have confirmed that the square

root transformation can yield a significant reduction in

daily precipitation interpolation error. By equilibrating

the variability of daily precipitation, the square root

transformation also leads to efficient detection of pre-

cipitation data errors, particularly false zeros, which

give rise to significant outliers from the fitted surface.

False zeros are quite common in precipitation data but

tend not to give rise to large residuals if the data are not

transformed.

d. Assessing the daily climate surfaces

The accuracy of the fitted daily climate surfaces was

assessed in two ways: by examining a range of standard

diagnostic statistics provided by the surface fitting pro-

cedure (Hutchinson 2004) and by examining residuals

from stations withheld from the analyses.

The primary surface diagnostic is the GCV. This is a

measure of the predictive error of the fitted surface that

is calculated by implicitly removing each data point and

summing with appropriate weighting the square of the

difference of each omitted data value from the spline

fitted to all other data points. The GCV is a robust mea-

sure of the predictive error of the spline surface, pro-

vided there is no short-range correlation in the data.

The square root of the GCV can be directly compared

with the root-mean-square residual from withheld data.

The signal, given by the trace of the influence matrix

(Wahba 1990), is a second informative surface diag-

nostic. It is an explicit measure of the complexity of the

fitted surface that varies between a small positive integer

and the number of stations used to generate the surface.

Hutchinson and Gessler (1994) suggest that the signal

should be no greater than about half the number of data

points. Models satisfying this condition tend to be more

robust and reliable in data-sparse regions. Higher sig-

nals can indicate that the climate field being analyzed is

too complex to be adequately represented by the data

or that there is significant short-range correlation in the

data. The latter shortcoming can be addressed by simply

removing closely spaced data points from the analysis

(Hutchinson and Gessler 1994; Hutchinson 1998a) or by

explicitly including short-range correlation structure in

the model (Wang 1998).

e. Withheld data

A set of 50 high-quality stations were withheld from

the data in the southern half of Canada defined by Eq.

(1). As noted above, this is where data are reasonably

dense and where agricultural and forestry applications

are needed. Of 368 reference climate stations available

for Canada, there were 150 stations in the southern half

of Canada with near-complete data coverage for the

years 1961–90. The ‘‘SELNOT’’ program in the ANUS-

PLIN package was used to choose from these stations 50

stations that equisampled three-dimensional longitude,

latitude, and elevation space, with longitude and lati-

tude in degrees and elevation in kilometers. These

withheld stations had virtually complete daily records

and evenly sampled the full range of latitude, longitude,

and elevation in the station data south of the line rep-

resented by Eq. (1). This method was preferred to a

random selection process that would bias the withheld

dataset to areas with relatively more stations at lower

elevations. The locations of the withheld stations are

shown in Fig. 3. Of the 50 withheld stations, 36 were

principal climate stations, leading to slightly inflated
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estimates of interpolation error. The withheld stations

were returned to the full dataset to construct the final

models.

An important consideration when testing the accur-

acy of precipitation occurrence patterns is delineating

wet days from dry. Inaccuracies in observing small

precipitation amounts are common so standard meteo-

rological practice was adopted in defining a wet day to

be one where at least 0.2 mm of precipitation was

recorded. Wet days for the interpolated precipitation

surfaces were defined similarly.

4. Results

The final models yielded grids of minimum and

maximum temperature and precipitation for each day

from 1 January 1961 to 31 December 2003—a total of

46 989 grids. The grids include the area covering 408–848N,

508–1538W with a cell size of 300 arc s. These grids are

available through the Canadian Forest Service (contact

authors) and also through Agriculture and Agri-Food

Canada (2007). Point estimates and finer-resolution

grids for specific locations or applications may be gen-

erated upon special request.

a. Model assessment—Surface diagnostics

Diagnostic measures for the daily temperature surfaces

are summarized by season in Table 1 and over all years in

Figs. 4a,b. The ratios of the signal to the number of data

points varied between about 0.3 and 0.8 and were con-

sistent across seasons and over years. This indicates that

the analyses were generally stable and robust, since ratios

in this range are in reasonable agreement with the max-

imum value of 0.5 recommended by Hutchinson and

Gessler (1994). Square root GCV values for maximum

temperature averaged around 1.68C and were generally

less than 2.08C. Square root GCV values for minimum

temperature averaged around 2.08C and were generally

less than 2.58C. These values showed a slight reduction

over the first 15 yr of the analyses in line with the increase

in temperature station numbers from less than 1600 to

over 2000. The GCV values did not increase over the

final 10 yr of analyses as station numbers declined, sug-

gesting that data quality may have improved slightly over

time. This is supported by the slight increase in temper-

ature signal ratios after around 1980. The smaller GCV

values and larger signal ratios for the maximum tem-

perature surfaces reflect the simpler processes controlling

FIG. 3. Locations of 50 withheld stations used to assess daily models for accuracy and bias across

southern Canada (Lambert conformal conic projection).
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maximum temperature. Root mean GCV values for

maximum temperature were smallest in autumn and

summer, and for minimum temperature were smallest in

summer. Root mean GCV values for both maximum and

minimum temperatures were largest in winter.

Diagnostic measures for the daily precipitation sur-

faces are summarized by season in Table 2 and over all

years in Figs. 4c,d. As for the temperature surfaces,

signal ratios for precipitation were generally stable across

seasons and over years. The signal ratio for positive

precipitation was generally less than 0.5 and showed no

response to changes in station numbers over time. On

the other hand, the signal ratios for precipitation oc-

currence were generally less than 0.2 and showed a

consistent reduction in the middle decade when station

numbers were at their largest. The actual signals (not

plotted) were reasonably constant after the 1960s sug-

gesting that there are intrinsic limits to the overall

complexity in occurrence structure that can be obtained

from the station network with this technique. The small

occurrence signals, which were generally less than 400,

confirmed the appropriateness of fitting the occurrence

surfaces with an approximate thin-plate smoothing

spline using 1000 knots. Square root GCV values for the

positive precipitation surfaces ranged between about 2

and 5 mm over all years and were slightly larger in

summer. These values are small in absolute terms, al-

though it should be noted that, because of the prepon-

derance of small precipitation values, surface means

generally ranged between 1 and 6 mm. Further exami-

nation of precipitation errors is undertaken below to

examine errors in seasonal and annual totals and in

precipitation extremes.

b. Model assessment—Withheld data for southern
Canada

Withheld data errors for the daily temperature sur-

faces are summarized by season in Table 3. The values

are generally consistent with the surface diagnostics in

Table 1 and Fig. 4. Predicted values of maximum tem-

perature tracked actual values closely. Mean absolute

errors (MAE) varied between about 0.58 and 2.08C, with

an overall average of 1.18C. Root-mean-square errors

(RMSE) averaged around 1.88C, in close agreement

with the average square root GCV values of 1.68C. The

maximum temperature withheld errors showed the

same seasonal variation exhibited by the root GCV

values, with errors generally smallest in summer and

autumn and largest in winter. The biases, though well

below measurement error, are statistically significant at

the 1% level except for summer. The largest bias oc-

curred in winter.

Mean absolute errors were slightly higher for minimum

temperature, varying between about 0.58 and 2.58C,

with an overall average of 1.68C. RMSEs averaged

around 2.28C, in good agreement with the average

square root GCV values of 2.08C. Again, there was

evidence of seasonal variation, with the smallest errors

occurring in the summer and the largest in the winter.

These biases were again well below measurement error

but statistically significant at the 1% level.

Withheld errors in temperature extremes are sum-

marized by midseason months in Table 4. The temper-

ature extremes were reasonably well matched, although

the mean errors differ significantly from zero at the 1%

level. The upper 95th percentiles of daily maximum

temperature were underestimated on average by 0.58C

in October (midautumn) up to 1.08C in January (mid-

winter). The lower 95th percentiles of daily minimum

temperature were overestimated on average by 0.68C in

July (midsummer) to 1.08C in October (midautumn).

Withheld data errors for interpolated daily precipita-

tion occurrence and amount are summarized by season

in Table 5. Daily precipitation occurrence errors are also

summarized over all years in Fig. 5. On average, the

models correctly predicted the occurrence of daily pre-

cipitation at withheld stations with 83% accuracy. There

was some seasonal variation, with predictive accuracy

generally exceeding 83% in spring, summer, and autumn

whereas predictive accuracy in winter was around 80%,

reflecting observational difficulties in winter. Of the ca-

ses in which precipitation occurrence was predicted in-

correctly, 7% were ‘‘false negatives’’ and 10% were

‘‘false positives.’’ This suggests that the models have little

TABLE 1. Seasonal summaries of daily temperature surface diagnostics. The signal ratio is the ratio of the signal of the fitted spline to the

number of data points. The root-mean GCV is an estimate of the standard predictive error of the fitted surface.

Season Mean no. of climate stations

Max temperature Min temperature

Mean signal ratio Root-mean GCV (8C) Mean signal ratio Root-mean GCV (8C)

Spring 1695 0.58 1.53 0.55 1.92

Summer 1799 0.60 1.44 0.43 1.79

Autumn 1688 0.57 1.42 0.46 1.93

Winter 1637 0.58 1.82 0.55 2.49

Avg 1705 0.58 1.56 0.44 2.05
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bias with respect to predicting precipitation occurrence.

However, Fig. 5 also shows that the false positives in-

creased and the false negatives decreased after 1977

when precipitation observations changed from imperial

to metric. MAE in daily positive precipitation averaged

around 2.9 mm and RMSE averaged around 5.2 mm. The

average RMSE were somewhat larger than the average

root GCV errors of 3.7 mm in Table 2, but, as in Table 2,

the withheld errors in daily positive precipitation were

largest in summer. There was a small negative bias in

predicted daily positive precipitation, statistically signif-

icant at the 1% level across all months, with an overall

average of around 20.6 mm.

We also compared actual and predicted seasonal and

annual totals at the withheld stations by summing daily

values over each season. These are summarized in Table 6.

The seasonal MAE ranged between 5% and 30% with

an overall average of around 14%. Percentage errors

FIG. 4. Diagnostic measures for the daily climate surfaces for 1961–2003. (a)–(c) The non-

shaded boxes show the range (median, 25th–75th percentile, 10th–90th percentile) in root

generalized cross validation (RTGCV) errors (left axis) for each year in which climate surfaces

were generated. (d) The nonshaded boxes show the range in the proportion of days on which

precipitation occurred. Shaded boxes in (a)–(c) show the range in the ratio of the signal to

number of data points (right axis).
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were distinctly larger in winter and smallest in summer

and autumn. The models tended to slightly underesti-

mate seasonal precipitation in spring and summer, and

overestimate winter precipitation. The biases are sta-

tistically significant at the 1% level except in fall. The

larger errors in winter are consistent with observational

difficulties. The average percentage error in the pre-

dicted annual totals was only 9% with a small negative

bias overall of 21.6%.

Withheld errors in daily, seasonal, and annual pre-

cipitation extremes are shown in Table 7. Both daily and

seasonal extremes were underestimated, with all mean

differences statistically different from zero at the 1%

level except for winter. Extremes were the least under-

estimated in winter and most underestimated in summer,

reflecting the spatial complexity of summer convective

weather systems. The errors in predicting daily 95th

upper percentiles were small in absolute terms, averag-

ing 22.9 mm, but these are relatively large in percentage

terms, averaging around 226%. However the average

percentage error in predicting seasonal upper 95th per-

centiles was only 28%. The percentage error in esti-

mating annual upper 95th percentiles was 27.3%.

c. Model assessment—Withheld data for northern
Canada

While the main focus of the error analysis for this

study is southern Canada, it is of interest to assess the

accuracy of the interpolated surfaces over the data

sparse region of northern Canada. Withheld validation

errors can be calculated for each data point by

extracting the diagonal values of the influence matrix

for the fitted spline surfaces and applying the ‘‘leaving

out one lemma’’ (Wahba 1990). This was done for se-

lected days in midseason months for the surfaces for

four selected years (1965, 1975, 1985, and 1995). With-

held errors in maximum temperature were around 100%

larger for data points north of the line given by Eq. (1)

than for data points south of the line. Withheld errors in

minimum temperature were around 80% larger in the

north. Withheld errors in precipitation occurrence were

around 40% larger in the north, while withheld errors in

daily positive precipitation were around 50% larger in

the north. Thus, withheld errors for northern Canada

were significantly larger, but not as large as might be

expected, given that the data in the north are around a

factor of 20 sparser than the data in the south. The

surfaces can thus be used with moderate confidence in

northern Canada, although daily extremes are likely to

be poorly represented in the north.

5. Discussion

The errors in the temperature and precipitation sur-

faces show consistent patterns reflecting contributing at-

mospheric processes, inadequacies in data networks, and

observational difficulties in winter months. Precipitation

when falling as snow is notoriously difficult to measure,

with reported measurement errors of up to 50% (Sevruk

1982; Goodison 1978). The errors also reflect the minor

impact of differing definitions of the climate. Overall,

errors in predicted temperature values were about 0.58C

larger than those obtained when modeling monthly

values with the same technique (McKenney et al. 2006).

This is reasonable given the greater spatial complexity of

daily weather patterns. As for most studies, errors in daily

minimum temperature were consistently larger, by

around 0.58C, than errors in daily maximum temperature.

Spatial patterns in maximum temperature are strongly

TABLE 2. Seasonal summaries of daily precipitation surface diagnostics. The signal ratio is the ratio of the signal of the fitted spline to the

number of data points. The root-mean GCV is an estimate of the overall standard predictive error of the fitted surface.

Season

Positive precipitation Precipitation occurrence

Mean no. of climate stations Mean signal ratio Root-mean GCV (mm) Mean no. of climate stations Mean signal ratio

Spring 853 0.45 3.2 2033 0.17

Summer 924 0.48 4.3 2172 0.18

Autumn 919 0.46 3.6 2038 0.16

Winter 968 0.38 3.5 1950 0.15

Avg 916 0.44 3.7 2048 0.17

TABLE 3. Seasonal and annual summaries of withheld data er-

rors for the daily temperature surfaces at 50 withheld stations

across southern Canada. The N denotes the number of withheld

values (i.e., number of withheld stations 3 number of daily

models); bias denotes the mean difference between surface values

and withheld values; MAE denotes the mean absolute error; and

RMSE denotes the root-mean-square error.

Season N

Max temperature (8C) Min temperature (8C)

Bias MAE RMSE Bias MAE RMSE

Spring 136 482 0.02 1.07 1.61 20.09 1.47 2.09

Summer 136 485 0.01 0.98 1.45 20.21 1.31 1.78

Autumn 134 706 0.07 0.97 1.50 0.10 1.51 2.08

Winter 133 308 0.18 1.48 2.37 0.15 2.10 2.92

Annual 540 981 0.07 1.12 1.77 20.02 1.60 2.26
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influenced by ground elevation intersecting with linear

atmospheric lapse rates but patterns in minimum tem-

perature are influenced by additional processes including

cold air drainage, which inverts local lapse rates, partic-

ularly in winter, and the latent heat of water condensa-

tion when the minimum temperature is close to the

dewpoint temperature. Thus, Hutchinson (1991) found

maximum temperature lapse rates for Tasmania of

around 88C (1000 m)21, reasonably close to the dry a-

diabatic lapse rate of 9.88C (1000 m)21, whereas mini-

mum temperature lapse rates varied between 38C in

winter and 58C in summer. Bolstad et al. (1998) found

similar behavior in maximum and minimum tempera-

ture lapse rates over the southern Appalachian Moun-

tains. They also noted the impact of topographic aspect

on maximum temperature.

The spatially varying dependence on elevation of the

trivariate spline analyses fitted here permitted spatial

variations in lapse rates to be accommodated. Plots of

withheld daily maximum and minimum temperature

errors versus elevation are shown in Figs. 6a,b. They

indicate very little residual bias in the modeled tem-

perature dependences on elevation. There is a slight

positive bias in the maximum temperature dependence

and a slight negative bias in the minimum temperature

dependence. These biases are associated with data from

the nonsummer months, consistent with the more com-

plex controlling processes and observational difficulties

in these months. The largest outliers from the fitted

trend lines are associated with remote stations in the

Yukon and British Columbia with few close neighbors

and atypical elevation gradients due to pooling of cold

air east of the Rocky Mountains.

The high spatial complexity of daily precipitation

leads to significant errors in the daily precipitation

surfaces, although these are ameliorated when data are

summed to seasonal and annual totals. There are also

moderate differences between daily root mean GCV

values and daily RMSE values. These reflect the inad-

equacy of the data network to fully sample the spatial

complexity of daily precipitation. They also reflect the

more even sampling of elevation gradients by the

withheld data than the main data network that is dom-

inated by low-elevation stations. However, the overall

elevation dependence of the interpolated precipitation

appears to be sound, with Fig. 6c showing virtually no

residual trend in bias on elevation. The largest residuals

from the fitted trend line are associated with a remote

west coastal station and a remote station on the north-

ern shore of the Gulf of St. Lawrence. In fact, there is no

residual trend on elevation in summer and autumn

consistent with the smaller seasonal percentage precipi-

tation errors in summer and autumn shown in Table 6.

The smaller precipitation errors in autumn are consis-

tent with the larger correlation length scales associated

with the broadscale synoptic systems that occur in this

season (Milewska and Hogg 2001). These broadscale

systems also appear to have an impact on the generally

smaller errors in maximum temperature in autumn, as

shown in Tables 1, 2, and 4.

TABLE 4. Summaries of withheld data errors in upper 95th percentiles of daily maximum temperature and lower 95th percentiles of daily

minimum temperature for midseason months at 50 withheld stations across southern Canada.

Midseason

month

Max temperature upper 95th percentiles (8C) Min temperature lower 95th percentiles (8C)

Mean percentile Mean error Std dev Mean percentile Mean error Std dev

Apr 18.3 20.59 1.02 210.9 0.60 1.26

Jul 29.3 20.57 1.09 6.2 0.60 1.17

Oct 19.3 20.48 0.74 26.4 0.96 1.35

Jan 4.2 20.95 1.00 230.5 0.89 1.52

TABLE 5. Seasonal and annual summaries of withheld data errors for the daily precipitation occurrence and daily positive precipitation

surfaces at 50 withheld stations across southern Canada. The N denotes the number of withheld daily precipitation values; bias denotes

the mean difference between surface values and withheld values; MAE denotes the mean absolute error; and RMSE denotes the root-

mean-square error.

Season

Daily precipitation occurrence Daily positive precipitation

Mean correct

predictions (%)

Mean false

positives (%)

Mean false

negatives (%) N Bias (mm) MAE (mm) RMSE (mm)

Spring 83.7 9.1 7.2 49 946 20.6 2.6 4.5

Summer 83.0 10.2 6.9 53 723 21.0 3.6 6.3

Autumn 83.1 10.2 6.7 55 462 20.5 3.0 5.4

Winter 80.2 11.0 8.8 61 707 20.3 2.5 4.5

Annual 82.5 10.1 7.4 220 838 20.6 2.9 5.2

APRIL 2009 H U T C H I N S O N E T A L . 735



FIG. 5. Accuracy in predicting daily precipitation occurrence across southern Canada for

1961–90. The nonshaded boxes show the range (median, 25th–75th percentile, 10th–90th per-

centile) in percent correct predictions. The gray shaded boxes show the range in percent false

positive predictions (i.e., predicting precipitation when none occurred). The black boxes show

the range in percent false negative predictions (i.e., predicting no precipitation when it does

occur) for each of four seasons: (a) spring, (b) summer, (c) autumn, and (d) winter. The hor-

izontal reference line is at 80% to help to compare seasonal differences in predictive accuracy.
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Comparison with other studies

Relatively few studies have generated historical daily

climate grids of the spatial coverage and resolution

presented here. We restrict attention here to studies

that have provided representative error estimates based

on a validation procedure that withheld data from the

analysis. The key summary error statistics are presented

in Table 8. The statistics include MAE of daily maximum

and minimum temperature, MAE of daily precipitation

on wet days, mean percentage error in predicting daily

precipitation occurrence, and mean percentage error in

annual precipitation. None of the comparison studies

provided estimates of errors in predicting temperature

or precipitation extremes.

The ‘‘DAYMET’’ procedure was developed and ap-

plied to the northwestern United States by Thornton

et al. (1997). It shares some broad similarities with the

present study in fitting local lapse rates on elevation and

in adapting to the spatially varying density of the data.

The method also fitted precipitation occurrence and wet

day precipitation separately. As for the present study

the interpolated values had minimal bias. The method

had somewhat larger errors in temperature and in an-

nual precipitation, despite the station density being 3

times higher than that of the present study. A likely

contributor to these errors is the larger elevation cov-

erage, about 3 times that of the present study.

This is confirmed by the application of DAYMET to

Austria by Hasenauer et al. (2003). This study had 6

times the station density of the present study and less

elevation coverage than the application to the north-

western United States. It obtained errors in temperature

and daily precipitation occurrence that were slightly

smaller than those of the present study. It was found to

overestimate precipitation at elevations above 1500 m

but, as for the present study, found no significant trend

in precipitation errors on elevation for stations below

1500 m. The study by Xia et al. (2001) had limited

spatial coverage over Bavaria but their preferred

method, trivariate thin-plate splines, had similarly good

results for temperature over a network that was half as

dense as the network of Hasenauer et al. (2003).

The study by Hunter and Meentemeyer (2005) de-

veloped a climatologically aided method that applied

ordinary kriging to daily differences from monthly values

obtained by the Precipitation-Elevation Regressions on

Independent Slopes Model (PRISM) method (Daly

et al. 1994). The monthly PRISM values provided a

spatially varying dependence on elevation for the in-

terpolated daily values. The climatologically aided ap-

proach achieved a moderate reduction in error over

using ordinary kriging alone, but the errors in maximum

temperature were larger than those of the present study

and the predicted maximum and minimum tempera-

tures had a significant negative bias of around 20.48C.

The study by Shen et al. (2001) suggests that inverse

distance interpolation can achieve errors slightly larger

than those obtained here when applied to denser data

networks with limited elevation coverage. The GIDS

method (Nalder and Wein 1998) was the method of

choice by Stahl et al. (2006) in interpolating daily maxi-

mum and minimum temperature over British Columbia.

It performed marginally better than the authors’ im-

plementation of the DAYMET method. GIDS incor-

porates a spatially varying dependence on elevation by

combining local multiple regression on position and

elevation with inverse distance squared interpolation. It

appears to achieve similar performance to that of the

TABLE 6. Summary percentage errors in predicted seasonal and

annual precipitation totals derived from adding predicted daily

precipitation values at 50 withheld stations across southern Can-

ada. The N denotes the number of seasonal or annual precipitation

values. Bias, MAE, and RMSE denote the mean, the mean abso-

lute value, and the root-mean-square, respectively, of the seasonal/

annual percentage errors.

Season N Bias (%) MAE (%) RMSE (%)

Spring 1494 21.8 13.7 18.4

Summer 1496 23.8 12.1 15.5

Autumn 1496 0.0 11.6 16.9

Winter 1444 8.0 17.8 24.0

Annual 1500 21.6 8.9 11.9

TABLE 7. Summary withheld data errors in upper 95th percentiles of daily, seasonal, and annual precipitation at 50 withheld stations

across southern Canada.

Daily precipitation upper 95th percentiles Seasonal precipitation upper 95th percentiles

Midseason

month

Mean percentile

(mm)

Mean error

(mm)

Std dev

(mm) Season

Mean percentile

(mm)

Mean percentage

error (%)

Std dev

(%)

Apr 9.5 22.4 2.5 Spring 255.6 29.4 15.1

Jul 13.7 24.3 3.5 Summer 350.4 213.9 11.7

Oct 11.7 22.6 2.7 Autumn 322.0 27.2 9.8

Jan 9.7 22.3 3.6 Winter 266.1 22.2 22.4

Annual 999.1 27.3 11.0
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present study over a data network with similar density

and elevation coverage. Its main deficiency, as noted by

Stahl et al. (2006) and Price et al. (2000), is a tendency to

produce occasional large outliers in data-sparse high-

elevation areas where lapse rates can be poorly deter-

mined by local methods.

Two temperature interpolation studies with fixed lapse

rates over extensive regions have yielded remarkably

good results. Jarvis and Stuart (2001) applied a partial

thin-plate smoothing spline with a fixed dependence on

elevation to daily minimum and maximum temperature

over the United Kingdom and Wales in 1976. In this

analysis the lapse rate was determined automatically

from data for each day. The RMS cross-validation er-

rors were somewhat smaller than the other studies cited

here, reflecting the limited elevation coverage of the

Jarvis and Stuart study and perhaps broader-scale con-

trolling processes and higher-quality data. Dodson and

Marks (1997) applied inverse distance interpolation to

elevation detrended temperatures with a fixed lapse

rate of 3.98C km21 for both maximum and minimum

temperature over the northwestern United States.

Pooled MAE were around 1.38C, quite similar to the

result obtained by the present study. While it is plain in

general that lapse rates should be spatially adaptive to

spatially varying processes, these last two studies show

that the elevation dependence should be quite stable to

give good results.

FIG. 6. Seasonal mean withheld errors across southern Canada plotted against elevation with

linear trend line: (a) maximum temperature, (b) minimum temperature, and (c) precipitation.
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6. Conclusions

Through a concerted modeling effort, daily grids of

minimum and maximum temperature and precipitation

have been produced for Canada for the period 1961–

2003. Additional years will be added as data become

available. The grids have already been used in prelim-

inary studies to evaluate high-resolution precipitation

products from satellites in high latitudes and in agri-

cultural applications. The method used in the present

study is well suited to a highly automated approach that

is necessitated by the magnitude of daily data. The

method appears to be more accurate than the other

methods cited when data network density and elevation

coverage are taken into account. However, as noted by

Thornton et al. (1997), differences between methods are

not particularly large. The key strength of the trivariate

spline method appears to be its global dependence on

all data. This permits robust and stable determination of

spatially varying dependences on elevation. This is

particularly important in the data-sparse areas that tend

to prevail in high-elevation regions. Overall error esti-

mates for southern Canada were quite low, with mean

absolute errors of 1.18 and 1.68C for daily maximum and

minimum temperatures, respectively, and about 9% for

annual precipitation. Daily temperature extremes were

also well modeled because of the strong broadscale to-

pographic control on daily temperature.

The results for daily precipitation compare well with

other studies but the percentage errors in daily precipi-

tation and daily precipitation extremes are relatively

large. This is an inevitable consequence of the high spa-

tial complexity associated with daily precipitation that

is below the spatial resolution of most data networks.

Further improvements in the current methodology are

aimed at combining the interpolation of precipitation

occurrence and positive amount so that each can inform

the other and remove occasional sharp disjunctions be-

tween interpolated positive precipitation and interpo-

lated dry areas. This may offer a modest improvement

but the inadequate coverage of most data networks will

remain. Methods that take account of long-term mean

precipitation patterns, as suggested by Hutchinson (1995b),

may also offer some improvement. The study by Tait

et al. (2006) offers encouraging evidence in this regard.

Nevertheless, daily precipitation surfaces interpolated

from standard data networks should be used with care,

particularly when daily precipitation extremes are of

critical importance. Such applications may be better

served probabilistically by interpolating the parameters

of the statistical distributions describing the overall tem-

poral and spatial patterns of extremes (Hutchinson

1995b). Fortunately, when the daily precipitation values

of this study are summed to seasonal and annual values

the errors are modest and these values can be used with

some confidence across southern Canada.

The success of any effort involving historical data is

also limited by deficiencies and inaccuracies in the data

itself. Deficiencies in data quality and network coverage

and inconsistencies in the definition of the climate day

have contributed to the errors tabulated here. We put

substantial effort into checking and correcting the Ca-

nadian historical daily data record, which provided a

larger, higher-quality dataset for the current work. Ef-

forts to improve the daily historical record such as

addressing the climate day issue and correcting climate

station locations are ongoing.

TABLE 8. Key validation error statistics, where available, of the preferred methods in existing studies. The N denotes the number of

withheld stations. ‘‘All’’ denotes that a cross-validation procedure was used. The last three studies were for temperature only.

Study N

Station

density

(km22)

Elev

coverage

(m)

MAE max

temperature

(8C)

MAE min

temperature

(8C)

MAE wet day

precipitation

(mm)

Mean daily percent

precipitation

occurrence

error (%)

Mean annual

percent

precipitation

error (%)

Present study 50 1/2500 0–1400 1.1 1.6 2.9 17 9

Thornton et al. (1997) All 1/800 0–4000 1.8 2.0 N.A. 17 19

Hasenauer et al. (2003) All 1/400 0–3000 1.0 1.2 3.0 11 N.A.

Xia et al. (2001) 8 1/1100 300–1500 0.8 1.2 1.2a N.A. N.A.

Hunter and

Meentemeyer (2005)

10% 1/2000 0–3000 2.0 1.7 2.5a N.A. N.A.

Shen et al. (2001) 4 1/600 650–900 1.5 1.8 0.9a N.A. N.A.

Stahl et al. (2006) All 1/2000 0–2100 1.3 1.6 – – –

Jarvis and Stuart (2001) All 1/1500 0–600 0.8b 1.1b – – –

Dodson and Marks (1997) All 1/1200 0–3000 1.3c 1.3c – – –

a Denotes MAE of precipitation on all days.
b Denotes RMS cross-validation error.
c Denotes pooled value for maximum and minimum temperatures.
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