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C	 limate is a fundamental driver of life. Plant and animal  
	 distribution, abundance, and productivity are all closely  
	 tied to environmental regimes driven by temperature, 

precipitation, and solar radiation patterns. Critical biological 
processes, such as plant bud burst, flowering, and migration, 
both of animal populations and vegetation communities, are 
also linked to climate and weather conditions. Furthermore, 
human activities in many sectors, including food production, 
building construction, recreation, and power generation (solar, 
wind, hydroelectric), are closely connected to climate.

Not surprisingly, given the pervasive influence of climate, 
there is a high demand for reliable spatial climate data [indeed, 
this was very much the theme at the recent World Climate 
Conference 3: Better climate information for a better future (see 
www.wmo.int/wcc3/page_en.php); Munang et al. 2010]. In 
forestry and many other sectors, there is often a need for esti-
mates well away from meteorological stations, which tend to be 
clustered near agricultural and urban areas. This need is met by 
“spatial” climate models, which can provide  

Natural Resources Canada, Canadian Forest Service, 
and their partners have developed spatial spline models 
and gridded datasets for North America for a wide 
variety of variables, time steps, and spatial resolutions.



estimates of climate at both specific locations of 
interest and in the form of regular grids. Projected 
climate change is another motivating factor in the 
development of these products. Spatial models of 
projected future climate allow these changes to be 
mapped, regional impacts to be assessed, and adapta-
tion measures to be developed.

In response to the need for spatial climate data, 
researchers at Natural Resources Canada’s Canadian 
Forest Service (CFS), the Australian National 
University (ANU), Environment Canada (EC), and 
the National Oceanic and Atmospheric Administra-
tion (NOAA) have collaborated to develop a wide 
range of spatial climate models. These models cover 
both Canada and the continental United States for a 
wide variety of climate variables, at time steps from 
monthly to daily, and across a range of spatial resolu-
tions. The initial motivation in developing the models 
was to address forestry-related issues; however, many 
agencies and researchers have since used them in a 
variety of applications. Here we discuss the general 
method used to generate the models, with particular 
attention paid to the assessment of their predictive 
accuracy (as opposed to model fit), and describe the 
array of products available and how they may be 
accessed. We also briefly describe some of the wider 
applications of these models and outline expected fur-
ther developments. Our overall intent is to contribute 
to the wider awareness of these products.

Climate data. All spatial climate modeling 
begins with, and ultimately depends on, data from 
meteorological stations. In Canada, these data mostly 

originate from Environment Canada, although 
there are other station networks available in some 
regions (e.g., summer fire weather stations). In the 
United States, NOAA’s National Climatic Data Center 
(NCDC) is the largest provider of climate data. Both 
of these agencies provide a wide variety of data prod-
ucts that have been error checked to varying degrees. 
Indeed, data quality is often taken for granted but 
considerable effort is expended in both Canada and 
the United States to provide consistent, long-term, ref-
erence-quality climate data and weather records (e.g., 
see Hutchinson et al. 2009; Hopkinson et al. 2011; 
Karl and Williams 1987; Vose et al. 2003; Peterson 
and Owen 2005; Menne et al. 2009, 2010). Despite 
extensive quality control measures, however, there 
can often be errors or inconsistencies that make it 
past the checks as well as inaccuracies inherent to the 
instrumentation used to measure the various climate 
metrics recorded at each station (i.e., measurement 
errors). For these reasons, among others, it must be 
remembered that spatial climate models are at best an 
approximation of actual climate. Both modelers and 
users should be acutely aware of data quality issues 
(e.g., Daly 2006; Hopkinson et al. 2011).

Another important data issue, particularly for 
disciplines such as forestry, which require histori-
cal climate records, is the variation in the number 
of climate stations through time and space. Prior 
to about 1930, there were very few weather stations 
in Canada, and far northern regions continue to be 
underserviced in the modern era [see McKenney et al. 
(2006a) for maps illustrating the varying number 
of stations over time]. The situation has been much 
better for the United States, though some data gaps 
exist (Guttman and Quayle 1996; Kunkel et al. 2005). 
Data deficiencies should be kept in mind, especially 
when using climate models covering older periods 
and/or northern regions. Error diagnostics and as-
sessments of predictive error are discussed below. 
These are essential for detecting and correcting data 
errors and model deficiencies, and for providing users 
with reliable measures of predictive accuracy of the 
fitted climate models.

Generating climate models and 
maps. All the climate models reported here have 
been generated using thin-plate smoothing splines, 
as implemented in the ANUSPLIN climate modeling 
software (e.g., Hutchinson 2011). The earliest applica-
tions of thin-plate smoothing splines were described 
by Wahba and Wendelberger (1980) and Hutchinson 
and Bischof (1983), but the methodology has been fur-
ther developed into an operational climate mapping 
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tool at the ANU over the last 20 years. ANUSPLIN 
has become one of the leading technologies in the 
development of climate models and maps, and has 
been applied in North America and many regions 
around the world (e.g., New et al. 2002; Hijmans 
et al. 2005; Rehfeldt 2006; Hutchinson et al. 2009). 
As documented in Daly (2006), ANUSPLIN belongs 
to the class of climate interpolation methods that 
can account for spatially varying dependences 
on elevation, a dominant predictor that is closely 
aligned with many controlling physical factors. A 
key strength of the ANUSPLIN method, in contrast 
to local regression methods, is its dependence on all 
the data (i.e., every data point observed for a single 
time slice contributes to the model fitted to minimize 
the generalized cross validation). This permits the 
robust and stable determination of dependencies on 
the predictor variables, particularly in data sparse, 
high-elevation regions.

ANUSPLIN is essentially a multidimensional 
“nonparametric” surface fitting method that has been 
found particularly well suited to the interpolation of 
various climate parameters, including daily maxi-
mum and minimum temperature, precipitation, and 
solar radiation. The underlying mathematics have 
been described in Wahba (1990) and Hutchinson 
(2011) (and references therein), so here we describe 
only the basic elements. The formal relationship be-
tween smoothing spline and kriging methods is well 
known (Matheron 1981; Dubrule 1983) and has been 
examined in a more practical setting by Hutchinson 
and Gessler (1994). A general representation for a 
thin-plate smoothing spline model fitted to n data 
values zi at positions xi is given by Hutchinson (1995) 
as

	 zi = (xi) + εi (i = 1, . . . , n),	

where f is an unknown function to be estimated, sub-
ject to a general smoothness condition and matching 
the n data values zi to within an appropriate degree of 
error, as represented by the εi. The εi are considered 
to be random errors (with zero mean) that account 
for measurement error as well as deficiencies in the 
spline model, such as local effects below the resolution 
of the data network.

Contrary to common perception, a multivariate 
thin-plate smoothing spline is neither a piecewise 
second- or third-order polynomial nor a tensor 
product of such. It is in fact a true multivariate gen-
eralization of the univariate cubic smoothing spline. 
This depends on sophisticated numerical methods, 
as described in Wahba (1990) and implemented in the 

ANUSPLIN software, to achieve a computationally 
efficient solution. A second misconception is that the 
climate fields interpolated by ANUSPLIN are always 
smooth and hence incapable of matching strong 
gradients in the data. In practice, strong horizontal 
gradients are often associated with strong gradients 
in elevation, so a smooth dependence on elevation can 
effectively represent such strong climatic gradients. 
However, where there are minimal observations (i.e., 
station data), smoothing splines can have difficulty 
matching strong gradients in the dependency of the 
climate surface on elevation, as manifested in tem-
perature inversions and across sharp rain shadows.

The parameters for the basic model, along with the 
amount of data smoothing, are usually estimated by 
minimizing a diagnostic called the generalized cross 
validation (GCV). This is normally a reliable measure 
of the predictive error of the fitted smoothing spline 
function that is discussed further below. It is calcu-
lated by implicitly removing each data point in turn 
and summing, with appropriate weighting, the square 
of the difference of each omitted data value from the 
spline fitted to all other data points. When fitting pre-
cipitation fields, it is currently recommended to apply 
a square root transformation to the precipitation in 
the surface fitting procedure to reduce skewness in 
the precipitation data (Hutchinson 1998; Hutchinson 
et al. 2009). This equilibrates the observed variability 
in precipitation between small and large values. The 
effectiveness of this transformation has been con-
firmed by its ability to allow the detection of subtle 
observation errors, such as missing precipitation 
values recorded as zero in low-rainfall areas, a rela-
tively common data error. ANUSPLIN automatically 
corrects for the small negative bias that results from 
this transformation (Hutchinson 2011).

In most standard applications, the xi represents 
longitude, latitude, and appropriately scaled eleva-
tion. Hutchinson (1995) has shown that it is appropri-
ate to multiply elevation by a factor of 100 in relation 
to horizontal position when using trivariate splines 
to model precipitation. This agrees with the accepted 
relative horizontal and vertical distance scales of 
atmospheric dynamics (Daley 1991) and underlines 
the dominant impact of elevation in these spatial 
models. Sharples et al. (2005) have demonstrated 
that the optimal spatial resolution of this elevation 
dependence is around 5–10 km, in line with previ-
ous studies. While the trivariate model is robust and 
well aligned with the controlling physical processes, 
the model, as indicated above, is still subject to the 
limitations imposed by sparse data networks. Thus, 
for example, the spline model has been found to 
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be deficient in representing precipitation gradients 
across the remote highlands of Bolivia and northern 
Peru, where very few long-term climate stations have 
been established (Killeen et al. 2007). Furthermore, 
comparison with satellite temperature data in western 
Canada suggested limitations to the spline approach 
in relation to certain land cover types, very high eleva-
tions, and large water bodies, where climate stations 
were few and unrepresentative; outside these data 
sparse areas, the models estimated well (Bussières 
and Milewska 2010).

Coastal temperature gradients, temperature in-
versions caused by cold-air pooling, and slope and 
aspect effects on precipitation (e.g., rain shadows) are 
well known in parts of North America, especially in 
coastal and mountainous areas (cf. Daly et al. 2008). 
Previous work has been done to represent these 
effects in ANUSPLIN models by incorporating ad-
ditional predictors, such as distance from large water 
bodies and terrain variables such as slope and aspect 
(Hutchinson 1995). However, these effects are not 
simulated explicitly in our North American climate 
models. The incorporation of additional local predic-
tors has been a particular challenge in Canada, where 
the number of data points representing these areas is 
very small. This is especially true in northern Canada, 
which contains just 5% of the available Canadian 
station network (Hutchinson et al. 2009). However, 
it should be noted that additional predictors, even 
when robustly calibrated, do not always improve the 
predictive accuracy of statistical models. Thus, Jarvis 
and Stuart (2001) found that more sophisticated inter-
polators, such as kriging and splines, required fewer 
additional predictors than less sophisticated methods 
to interpolate daily temperature, with a partial spline 
dependence on elevation yielding the best results.

ANUSPLIN can be configured in various ways. 
For example, the software can incorporate linear 
submodels to form a partial spline (Hutchinson 1991; 
Jarvis and Stuart 2001). Such analyses have been used 
to incorporate physical, process-based topographic 
influences for interpolating monthly evapotranspira-
tion and pan evaporation data (McVicar et al. 2007). 
ANUSPLIN can also support exact interpolation 
through the climate station data values. Exact inter-
polation essentially assumes no error in the station 
data and can result in steep, questionable gradients 
between stations. Nevertheless, in situations where 
data are limited, and the statistical relationship 
between the climate variable of interest and the pre-
dictor variables is poorly supported, the capability to 
modify the structural form and nature of the final 
fitted function has proven to be useful.

Importantly for practical applications, the spline 
models can be easily resolved to any location (e.g., 
forest research plots, plantation sites, vegetation sur-
vey locations, farms) by providing site values for each 
independent variable—typically latitude, longitude, 
and elevation. This is perhaps a somewhat subtle 
point—with longitude and latitude as the indepen-
dent variables, the models are spatially continuous. 
Elevation values, if not known, can be estimated via 
readily available digital elevation models (DEMs). 
Maps are generated by supplying a regular grid of the 
independent variables—usually in the form of a DEM. 
Most of our standard Internet map products make use 
of a 300-arc-second-resolution (approximately 10 km) 
DEM that was developed from Canada’s 1:250,000 
National Topographic Series topographic data (see 
Lawrence et al. 2008 for details) and the Global 30 
Arc-Second Elevation Data Set (GTOPO30) DEM 
available from the U.S. Geological Survey (USGS; see 
http://eros.usgs.gov/#/Find_Data/Products_and_
Data_Available/gtopo30_info). Higher-resolution 
maps have also been generated for mountainous areas 
and other locations where analysts have particular 
needs—catchment hydrology studies being one 
relevant example. Given the increase in computing 
power and data storage capacities, higher-resolution 
grids are now much more feasible, although for some 
variables (e.g., precipitation) there is a limit to how 
much extra information finer topographic (DEM) 
resolutions can provide (Sharples et al. 2005). Many 
of our web-accessible maps (described below) are vari-
ably resolved at scales appropriate for user-defined 
domains.

Climate change models. We have also 
generated a suite of climate change products [see 
McKenney et al. (2006b) for full details; Joyce et al. 
2011; Price et al. 2011] using data made available 
following the Intergovernmental Panel on Climate 
Change’s (IPCC)  Third and Fourth Assessment 
Reports (Houghton et al. 2001; Alley et al. 2007). The 
monthly time series of surface estimates for certain 
desirable variables, as projected by four general circu-
lation models (GCMs) for different forcing scenarios 
of future greenhouse gas emissions [as described in 
Nakicenovic and Swart (2000)], were downloaded 
from publicly accessible Internet sites. These climate 
change projections are necessarily very coarse in 
nature, with grid spacings of 150 km or greater, and 
hence generally require “downscaling” to a more 
relevant resolution to be useful for impacts studies. 
In our case, the raw GCM outputs were interpolated 
after converting them to anomalies relative to the 
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1961–90 period (as simulated by the same GCM). 
These anomaly surfaces have also been integrated 
at the locations of more than 7,000 climate stations 
in the United States and Canada, and the predicted 
changes at these locations added to the 1961–90 
station normals. This has provided a network of sta-
tions with projected climate values that incorporated 
both established site-to-site variation in climate as 
well as the broad-scale average changes predicted 
by the GCMs. Besides interpolating these models of 
future climate for each month of each year through 

to 2100 (Price et al. 2004), we have also generated 
average changes for three future periods (2011–40, 
2041–70, and 2071–2100) (McKenney et al. 2006b; 
see also Joyce et al. 2011; Price et al. 2011).

Climate products. Table 1 provides an 
overview of the “primary” climate surfaces cur-
rently completed. Many of the variables listed in 
Table 1 have been modeled at a number of different 
scales and time steps. Daily minimum and maxi-
mum temperature and precipitation are primary 

Table 1. Climate variables for which models have been generated.

Parameter Units Time stepa Typeb Period covered Area coveredc

Minimum and maximum 
temperature °C

m
n 1931–60, 1961–90, 1971–2000 CA, NA

h 1901–2008 CA, NA

w
n 1961–90, 1971–2000 CA

h 1961–2003 CA

d h 1950–2008 CA

Precipitation mm

m
n 1931–60, 1961–90, 1971–2000 CA, NA

h 1901–2008 CA, NA

w
n 1961–90, 1971–2000 CA

h 1961–2003 CA

d h 1950–2008 CA

Solar radiation MJ m–2 m n 1961–1990 CA, NA

Photovoltaic potential MJ m–2 m n,h 1971–1994 CA

Sunshine h m n 1961–1990; 1971–2000 CA

Potential evapotranspiration mm m n 1961–1990, 1971–2000 CA, NA

Climate moisture indexd cm m n 1961–1990, 1971–2000 CA, NA

Relative humidity % m n 1961–1990 CA, NA

Vapor pressure kPa m n 1961–1990 CA

Evaporation (pan and lake) mm m,w n,h 1961–1990 CA

Extreme minimum and 
maximum temperature °C

a,m n 1961–1990, 1971–2000 NA

a,m h 1961–2000 NA

Frost-free days d a n 1961–1990 CA

Avg wind speed km h–1 m n 1961–1990 CA, NA

Maximum wind gust km h–1 m n 1961–1990, 1971–2000 CA

Rainfall mm m n 1931–60, 1961–90, 1971–2000 CA

Snow depth cm m
n 1961–90, 1971–2000 CA

h 1955–2008
a The time unit of the climate model: a = annual, m = monthly, w = weekly, and d = daily.
b The type of climate model: n = normal (i.e., long-term average) and h = historical (i.e., models generated for each year 
over a given period).
c CA = Canada; NA = Canada and the United States.
d As defined by Hogg (1997).
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variables that are used in many applications and, as 
such, considerable effort has gone into summarizing 
them in various ways. For example, daily minimum 
and maximum temperature surfaces are available 
in the form of i) monthly averages for a variety of 

30-yr “normal” periods (e.g., 1901–30, 1931–60, 
1961–90),  ii) monthly averages for each year over 
the period 1901–2008, and iii) daily values for each 
day over the period 1950–2007. Similar products 
are available for precipitation. The remainder of the 

Table 2. Bioclimatic variables generated from Canadian and North American temperature and precipitation 
surfaces at the monthly-mean and historical monthly time steps.

Variable Description

Annual mean temperature Avg of mean monthly temperatures

Mean diurnal range Avg of monthly temperature ranges

Isothermality Variable 2 ÷ variable 7

Temperature seasonality
Standard deviation of monthly-mean temperature estimates expressed as a  
percent of their mean

Max temperature of warmest month Highest monthly maximum temperature

Min temperature of coldest month Lowest monthly minimum temperature

Temperature annual range Variable 5 – variable 6

Mean temperature of wettest quarter Avg temperature during 3 wettest months

Mean temperature of driest quarter Avg temperature during 3 driest months

Mean temperature of warmest quarter Avg temperature during 3 warmest months

Mean temperature of coldest quarter Avg temperature during 3 coldest months

Annual precipitation Sum of monthly precipitation values

Precipitation of wettest month Precipitation of the wettest month

Precipitation of driest month Precipitation of the driest month

Precipitation seasonality
Standard deviation of the monthly precipitation estimates expressed as a 
percent of their mean

Precipitation of wettest quarter Total precipitation of 3 wettest months

Precipitation of driest quarter Total precipitation of 3 driest months

Precipitation of warmest quarter Total precipitation of 3 warmest months

Precipitation of coldest quarter Total precipitation of 3 coldest months

Growing season start Julian day number at start of growing season

Growing season end Julian day number at end of growing season

Growing season length Length of growing season (days)

Total precipitation period 1 Total precipitation 3 weeks prior to growing season

Total precipitation period 2 Total precipitation during first 6 weeks of growing season

Total precipitation period 3 Total precipitation during the growing season

Total precipitation period 4 Variable 25 – variable 24

Growing degree days period 1 Degree days (above 5ºC) for 3 weeks prior to growing season

Growing degree days period 2 Degree days (above 5ºC) for first 6 weeks of growing season

Growing degree days period 3 Degree days (above 5ºC) for growing season

Growing degree days period 4 Variable 29 – variable 28

Annual minimum temperature Overall average of monthly average minimum temperatures

Annual maximum temperature Overall average of monthly average maximum temperatures

Mean temperature period 3 Average temperature during growing season

Temperature range period 3
Highest maximum temperature minus lowest minimum temperature during 
growing season
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variables in Table 1 have been developed for specific 
applications and generally cover shorter periods and 
fewer time steps.

The temperature and precipitation variables can 
also be used to calculate a suite of “bioclimatic” 
variables (Table 2). These variables summarize tem-
perature and precipitation in ways that are potentially 
important to plants and animals and are arguably 
more intuitive for some purposes. They include 
classic temperature-based bioclimatic indices, such 
as growing season length, growing degree-day sums, 
minimum temperature of the coldest month, and 
annual mean temperature, which are often used as 
input to process-based models of ecosystem dynamics 
(e.g., Sitch et al. 2003) as well as numerous agricul-
tural crop models. These variables are available for 
both 30-yr normal periods and historical monthly 
time steps. For our climate change work, we generated 
spatial models of future climate based on a variety of 
GCMs and emissions scenarios (Table 3), including 
three future normal periods for the bioclimatic sum-
mary variables listed in Table 2 as well as temperature 
and precipitation, as previously noted.

More than 60,000 of our climate models can be 
viewed in map format online (http://cfs.nrcan.gc.ca 
/projects/3?lang=en_CA). This number does not 
include the historical daily climate models because 
their file size prohibits rapid interactive mapping (i.e., 
there are more than 50,000 daily models alone). The 
Web mapper makes use of MapServer, an open-source 
project to support spatial mapping on the Internet 
(see http://mapserver.org). 
These data are managed in 
an Oracle Database frame-
work that supports large 
dataset management appli-
cations (www.oracle.com 
/index.html). Though the 
Web mapping system is 
not a geographic infor-
mation system (GIS) per 
se, it does have some GIS 
functionality, such as data 
layer selection, zoom capa-
bilities, and a simple query 
tool. A recent feature is the 
option to download model 
estimates for user-supplied 
locations. The volume of 
customized data requests 
has grown significantly 
over time, and this new ca-
pacity should facilitate the 

use of these climate models while easing the burden 
of responding to data requests. It is currently not 
possible to download gridded data directly from the 
website. However, for those using the OpenGIS data 
protocols, maps can be drawn in GIS using the Web 
Map Service protocol. For the time being, gridded 
data requests can be made by contacting the cor-
responding author.

How good are the models? Our climate 
models are assessed for predictive accuracy and bias 
using a variety of metrics. Several measures of model 
quality are also provided as standard output with 
each ANUSPLIN run. The signal, given by the trace 
of the influence matrix (Wahba 1990), indicates the 
complexity of the surface and varies between a small 
positive integer and the number of weather stations 
used in each model. Hutchinson and Gessler (1994) 
suggest that the signal should be no more than about 
half the number of data points. Models with such 
signals tend to be more robust and reliable in data-
sparse regions. This is particularly important for ap-
plications in forested regions, where weather station 
coverage is often sparse. The GCV described above 
is also normally a reliable measure of the predictive 
capacity of the models. Its main weakness is that 
it can lead to undersmoothing of noisy data when 
there is significant short-range correlation in the 
data (Hutchinson and Gessler 1994). It can also be 
biased when the data network has uneven density. The 
analysis by Hutchinson (1998) indicates that in the 

Table 3. GCMs, versions, and emissions scenarios for which surfaces of 
North American future climate have been generated.

GCM Version* Scenario Period**

Canadian Centre for Climate 
Modelling and Analysis Coupled 
GCM (CGCM)

2.0 A2, B2 1900–2100

3.1 A2, A1B, B1 1961–2100

Commonwealth Scientific and 
Industrial Research Organisation 
(CSIRO)

2.0 A2, B2 1961–2100

3.5 A2, A1B, B1 1961–2100

National Center for Atmospheric 
Research (NCAR)

PCM A2, B2 1961–2099

CCSM3.0 A2, A1B, B1 1961–2099

Hadley Centre Coupled Model 
(HadCM)

3.0 A2, B2 1950–2099

Center for Climate System Research 
Model for Interdisciplinary Research 
on Climate (MIROC)

3.2 A2, A1B, B1 1961–2100

* PCM = Parallel Climate model; CCSM3 = Community Climate System Model, version 3.

** Raw GCM data were obtained for the period listed; future projections are for three future 
normal periods (2011–40, 2041–70, 2071–2100) and various other time steps of interest.
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precipitation context, short-range correlation oper-
ates over distances less than 10 km. Thus, short-range 
correlation has limited impact on relatively sparse 
datasets. Bias due to uneven network density can be 
assessed by calculating predictive errors at spatially 
representative locations withheld from the fitting 
procedure. McKenney et al. (2006a) and Hutchinson 
et al. (2009) have verified the accuracy of GCV in 
Canada-wide analyses using explicitly withheld data 
that equisampled the longitude, latitude, and verti-
cally exaggerated elevation space covered by the data 
networks. The GCVs were closer to the withheld error 
statistics for temperature, which is more reliably esti-
mated from limited data networks than is precipita-
tion. McKenney et al. (2008) also demonstrated good 
agreement between GCVs and spatially representative 
withheld error statistics for spatial analyses of solar 
radiation. The two error statistics also agreed in their 
relative assessments of predictive accuracy of three 
different spline model formulations, confirming the 
ability of GCV to discriminate between different 
models without the need for explicitly withholding 
test data.

Hutchinson et al. (2009) provided a comprehen-
sive withheld data assessment of their fitted daily 
temperature and precipitation models, by calculating 
the mean error (i.e., bias) and mean absolute error 

(i.e., accuracy) of the differences between the 
estimated values and the recorded withheld values 
at specific spatially representative locations. This 
analysis showed that the predictive errors generated 
for daily thin-plate smoothing spline interpolations 
compared well with those reported for other methods 
and locations using denser data networks. Errors in 
estimating daily rainfall occurrence of around 17% 
compared well with the one other study for North 
America where this statistic was reported. Daily 
rainfall occurrence is a critical issue in, for example, 
modeling crop disease (e.g., Kang et al. 2010). A recent 
revision of this analysis using data corrected for time 
of observation further reduced these predictive errors 
by about 15% and 22% for the summary temperature 
and precipitation residuals, respectively (Hopkinson 
et al. 2011), further underlining the importance of 
data quality issues.

Table 4 summarizes average withheld error esti-
mates for our temperature and precipitation mod-
els across spatially representative locations at the 
monthly normal, historical monthly, and historical 
daily time steps. Errors associated with the normal 
surfaces are quite small, reflecting the greater spatial 
coherence of monthly normals. The corresponding 
values in Table 4 are similar to those reported by 
Price et al. (2000) and Daly et al. (2008). They are 

Table 4. Mean absolute (i.e., accuracy) and mean (i.e., bias) withheld errors associated with spatial 
models of temperature and precipitation. Fifty spatially representative withheld stations were used 
to test the daily [see Hutchinson et al. (2009) for details] and monthly normal (Hopkinson et al. 2011, 
manuscript submitted to J. Appl. Meteor. Climatol.) models that cover Canada; 200 spatially represen-
tative withheld stations were used to test the monthly historical models that cover Canada and the 
United States (see McKenney et al. 2006a for details).

Parameter Units Time stepa Model typeb Period
Mean  

absolute error Mean error

Minimum 
temperature °C

m n 1971–2000 0.6 0.04

m h 1950–2000 1.3 0.02

d h 1961–1990 1.6 −0.02

Maximum 
temperature °C

m n 1971–2000 0.4 0.23

m h 1950–2000 0.9 0.05

d h 1961–1990 1.1 0.07

Precipitation %

m n 1971–2000 6.7 −2.30

m h 1950–2000 30.3 2.50

d h 1961–1990 8.9c −1.60c

a The time unit of the climate model: m = monthly and d = daily.
b The type of climate model: n = normal (i.e., 30-yr average) and h = historical (i.e., models generated for each time 
step over a given period).

c Errors associated with daily precipitation models are from annual totals of daily values averaged over withheld 
stations for the stated period (following Thornton et al. 1997).
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not much larger than the measurement error that 
can be attributed to the recording instruments. 
The historical monthly errors are larger, reflecting 
the challenges of modeling shorter time steps, with 
monthly temperature errors approximately twice 
the monthly normal temperature errors. The daily 
models have slightly larger errors for temperature. 
However, assessing errors associated with daily 
precipitation models is problematic (Thornton et al. 
1997); thus, we follow the convention of summing 
daily values to annual totals. Models with shorter 
time steps are generally expected to have larger 
errors because they are attempting to capture phe-
nomena that are much more variable in space and 
time. For example, convective rainfall events often 
occur over a limited area and can be easily missed 
by station networks. Thus, while daily models may 
describe daily temperature extremes reasonably 
well, they have limited accuracy in describing daily 
precipitation extremes (Hutchinson et al. 2009). For 
many applications, the key information required for 
daily precipitation extremes consists of statistics 
describing overall likelihood, which are more accu-
rately described by interpolating the key parameters 
describing these statistics rather than inferring the 
statistics from individually interpolated daily values. 
Models using other approaches and additional pre-
dictors, such as radar rainfall data (e.g., Haberlandt 
2007; Overeem et al. 2009), climate model outputs, 
and detailed topographic analyses (Böhner 2005), 
have the potential to further improve accuracy; al-
though, as noted above, additional predictors do not 
always improve overall predictive accuracy.

Usage and application. These climate 
products have been applied in a number of forest-
related areas, such as assessing plant hardiness 
(McKenney et al. 2007a), climate change impacts on 
forest resources (McKenney et al. 2007b; Price and 
Scott 2006), nonindigenous species modeling (Venier 
et al. 1998; Yemshanov et al. 2009), forest productivity 
modeling (McKenney and Pedlar 2003; Yemshanov 
et al. 2007), and seed movement (McKenney et al. 
2009). A variety of users from academic institutions 
and government agencies have applied the data to a 
range of other topics, including wildlife research (Chu 
et al. 2008), human health and welfare (McLeman 
et al. 2010), crop yields (Pearson et al. 2008; Cabas 
et al. 2010), and photovoltaic energy production 
(McKenney et al. 2008).

Conclusions and future direc-
tions. Spatial climate modeling is an ongoing task, 

as source datasets change in coverage and quality 
(e.g., Canadian station numbers have been declining 
in recent years) and as new applications and methods 
evolve. In addition to continuously updating and 
improving existing models, there are many climate 
variables and time steps for which models could be 
generated. Here we outline several projects that will 
be a focus in the near future.

Historical daily climate models provide estimates 
of past daily temperature and precipitation over a 
selected period. Such data are particularly valuable 
as input for models that simulate processes such as 
plant growth, fire severity, and plant phenology. We 
currently have daily models that cover the period 
1950–2007 for Canada only (Hutchinson et al. 2009). 
In collaboration with Environment Canada and 
NOAA’s NCDC in the United States, we are in the 
process of generating North American–wide daily 
models for this same period and possibly for earlier 
decades where the data allow. These models will 
employ datasets that correct for issues such as dispari-
ties in “climate day” definitions and recording times 
between the U.S. and Canadian networks.

Visitors to our website (http://cfs.nrcan.gc.ca 
/subsite/glfc-climate) are currently able to view maps 
and download climate values for a set of user-supplied 
locations. In the future, we hope to launch a function 
that will allow users to download customized gridded 
data as well. For simple requests, this will eliminate 
the need for users to contact us directly. For more 
complex requests (e.g., involving spatial resolutions 
not available from the website), users will still need to 
contact the corresponding author. Another planned 
enhancement to the website involves the addition of 
detailed daily summaries. This function would allow 
users to obtain graphical and tabular summaries of 
historical temperature and precipitation values for 
any given location.

There can be a significant lag between when the 
time measurements are recorded at meteorological 
stations and when quality-controlled data are made 
available to the public. We plan to continue to update 
our models as new station data are made available. 
For example, when the 2010 records are available, we 
will generate new normals for the 1981–2010 period. 
The fifth IPCC report is due out in 2014 and will 
likely entail improved and updated climate change 
products, though certain GCMs and scenarios may 
be added to our current suite of models prior to 
that. Finally, the ANUSPLIN package continues to 
be upgraded. For example, “additive” spline models 
have been developed that can robustly incorporate 
spatially varying dependencies on several additional 
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independent variables without violating the “curse of 
dimension” (Sharples and Hutchinson 2004).

In conclusion, there is a growing demand for spa-
tially reliable climate models at a variety of temporal 
and spatial resolutions. This paper has provided 
details about our climate models—how they are de-
veloped and evaluated, how they can be accessed, and 
how they will be updated and improved in the near 
future. Models are most valuable when they are used. 
We hope this paper raises awareness of our climate 
models and encourages potential users to visit the 
website or contact us for further information.
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